Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36680096

RESUMO

Polydnavirus (PDV) is a parasitic factor of endoparasitic wasps and contributes greatly to overcoming the immune response of parasitized hosts. Protein tyrosine phosphatases (PTPs) regulate a wide variety of biological processes at the post-transcriptional level in mammals, but knowledge of PDV PTP action during a parasitoid−host interaction is limited. In this study, we characterized a PTP gene, CvBV_12-6, derived from Cotesia vestalis bracovirus (CvBV), and explored its possible regulatory role in the immune response of the host Plutella xylostella. Our results from qPCR show that CvBV_12-6 was highly expressed in hemocytes at an early stage of parasitization. To explore CvBV_12-6 function, we specifically expressed CvBV_12-6 in Drosophila melanogaster hemocytes. The results show that Hml-Gal4 > CvBV_12-6 suppressed the phenoloxidase activity of hemolymph in D. melanogaster, but exerted no effect on the total count or the viability of the hemocytes. In addition, the Hml-Gal4 > CvBV_12-6 flies exhibited decreased antibacterial abilities against Staphylococcus aureus. Similarly, we found that CvBV_12-6 significantly suppressed the melanization of the host P. xylostella 24 h post parasitization and reduced the viability, but not the number, of hemocytes. In conclusion, CvBV_12-6 negatively regulated both cellular and humoral immunity in P. xylostella, and the related molecular mechanism may be universal to insects.


Assuntos
Mariposas , Polydnaviridae , Animais , Sequência de Aminoácidos , Drosophila melanogaster/virologia , Monofenol Mono-Oxigenase/metabolismo , Mariposas/virologia , Polydnaviridae/genética , Polydnaviridae/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Interações Hospedeiro-Patógeno
2.
Nat Commun ; 9(1): 2205, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880839

RESUMO

Parasitic wasps produce several factors including venom, polydnaviruses (PDVs) and specialized wasp cells named teratocytes that benefit the survival of offspring by altering the physiology of hosts. However, the underlying molecular mechanisms for the alterations remain unclear. Here we find that the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella, and its associated bracovirus (CvBV) can produce miRNAs and deliver the products into the host via different ways. Certain miRNAs in the parasitized host are mainly produced by teratocytes, while the expression level of miRNAs encoded by CvBV can be 100-fold greater in parasitized hosts than non-parasitized ones. We further show that one teratocyte-produced miRNA (Cve-miR-281-3p) and one CvBV-produced miRNA (Cve-miR-novel22-5p-1) arrest host growth by modulating expression of the host ecdysone receptor (EcR). Altogether, our results show the first evidence of cross-species regulation by miRNAs in animal parasitism and their possible function in the alteration of host physiology during parasitism.


Assuntos
Interações Hospedeiro-Parasita/genética , MicroRNAs/fisiologia , Mariposas/crescimento & desenvolvimento , Parasitos/genética , Polydnaviridae/genética , Vespas/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/genética , Larva/virologia , Mariposas/parasitologia , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Vespas/virologia
3.
J Insect Physiol ; 107: 197-203, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29626507

RESUMO

Laccase (EC 1.10.3.2) is a phenoloxidase found in many insect species. The Laccase 1 gene from Plutella xylostella (PxLac1) was cloned, and its expression patterns and functions were determined using qPCR and RNAi methods. The results showed that the expression levels of PxLac1 were consistently high in all larval stages, and the most abundant was in the midgut during the 4th instar stage. Moreover, the expression of PxLac1 was up-regulated in response to bacterial infection, and decreased 24 h after being parasitized by Cotesia vestalis. Further analyses indicated that the effect of parasitization on PxLac1 was induced by active C. vestalis Bracovirus (CvBV). Haemocyte-free hemolymph phenoloxidase (PO) activity was suppressed when PxLac1 was treated with RNAi. Our results provide evidence for a connection between the Laccase 1 gene and insect immunity, and revealed that parasitoid polydnavirus suppresses host PO activity via PxLac1 regulation.


Assuntos
Proteínas de Insetos/genética , Lacase/genética , Mariposas/genética , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Lacase/química , Lacase/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Filogenia , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...